Ventricular Tachycardia

29 Ventricular Tachycardia



Ventricular tachycardia (VT) refers to a cardiac rhythm with a rate greater than 100 beats per minute (bpm) originating from the distal conduction system (distal to the His bundle) or ventricular myocardium. With few exceptions, VT presents with a wide QRS tachycardia on ECG. Although wide-QRS-complex tachycardia is not synonymous with VT, 80% of patients with a wide-complex tachycardia have VT as a diagnosis. VT is usually found in patients with underlying structural heart disease, predominantly coronary artery disease (CAD) and myocardial ischemia. It is often associated with hemodynamic instability and thus may cause symptoms such as chest pain, dyspnea, palpitations, or syncope, or lead to sudden cardiac death (SCD). The severity of symptoms determines the urgency of treatment.


This chapter reviews the pathogenesis, diagnosis, and treatment of VT. SCD, which most commonly results from VT, is addressed in greater detail in Chapter 30.



Etiology and Pathogenesis


The type of VT, prognosis, and management of the arrhythmia are dependent on the presence of structural heart disease. The risk of sustained monomorphic VT is higher in patients with severe left ventricular (LV) dysfunction and extensive scarring. VT is also associated with myocardial ischemia, congestive heart failure, infiltrative cardiomyopathy, and high catecholamine states (Fig. 29-1). Any wide-complex tachycardia in a patient with a history of ischemic heart disease should be managed as VT until proven otherwise. In such a patient the mechanism is most often a reentry circuit in a region of healed myocardial infarction (MI). In these areas, gap junctions are often disrupted leading to slow and disorderly conduction by surviving cardiomyocytes. This physiology can lead to initiation and maintenance of reentrant circuits. Intracardiac recordings in the electrophysiology laboratory from the VT site of origin during sinus rhythm demonstrate fractionated low-amplitude electrograms that become continuous during VT. Sustained monomorphic VTs due to reentry can be reliably induced and terminated with ventricular programmed stimulation.



Patients with VT but no ischemic heart disease may still have reentry as the underlying cause. Patients with dilated cardiomyopathy (DCM), up to 60% of the time, have multiple patchy areas of fibrosis in the left ventricle on autopsy that can result in reentrant VT. Other mechanisms are possible in nonischemic cardiomyopathy; however, including enhanced automaticity or triggered activity, which can render these patients especially vulnerable to early or delayed after-depolarizations induced by QT interval–prolonging medications and/or metabolic abnormalities. Bundle branch reentry tachycardia, caused by a macroreentrant circuit involving the His-Purkinje system may also be responsible for wide-complex tachycardia in DCM patients (see below). In fact, a monomorphic wide-complex tachycardia arises from bundle branch reentry up to 40% of the time in patients with DCM.



Differential and Ecg Diagnosis


VT must be distinguished from other wide-complex tachycardias: supraventricular tachycardia (SVT) with bundle branch block, preexcitation of the ventricle during SVT due to anterograde conduction over an accessory pathway (antidromic reciprocating tachycardia), or ventricular pacing. The decision that a wide-complex tachycardia is VT is extremely important, because misdiagnosis can delay lifesaving treatment.


Many diagnostic algorithms exist for distinguishing VT from other wide-complex tachycardias. These can be confusing and very often unhelpful. ECG clues that, if present, favor VT, are reviewed below. The two main groups of diagnostic criteria relate to abnormalities of QRS morphology and identification of independent P-wave activity.



QRS Morphology


If the QRS morphology changes during the tachycardia relative to baseline, then the diagnosis is probably VT. Intraventricular conduction is always abnormal in VT and results in broadening of the QRS. In general, the QRS duration is usually longer than 120 milliseconds in VT with the caveat that VTs originating from the His-Purkinje system can, on rare occasion, have a normal QRS duration. Wellens and colleagues (1978) found that approximately 70% of VTs have a QRS duration longer than 140 milliseconds in patients with a right bundle branch block pattern. VTs with a left bundle branch pattern generally have a QRS duration longer than 160 milliseconds. Generally, a VT with right bundle branch block morphology (predominantly positive QRS complex in lead V1) suggests an LV origin, whereas a VT with left bundle branch block morphology (predominantly negative QRS in lead V1) suggests right ventricular (RV) origin (Fig. 29-2A). VT with a right bundle branch block pattern will not have a typical RS wave. The R wave is single or biphasic (QR or RS) or triphasic (with initial R wave taller than the smaller r′ and an S wave in between that crosses the baseline). V6 typically demonstrates small r and large S waves. In VT with a left bundle branch block pattern, the duration of the initial R wave exceeds 30 milliseconds, and the beginning of the QRS to the nadir of the S wave exceeds 70 milliseconds. The S wave may be notched or slurred. Since SVT with aberration is due to a functional bundle branch block, the QRS should resemble a typical bundle branch block, and the S wave is neither notched or slurred. If V6 is used, a qS pattern suggests VT. Though sometimes useful, these findings have limited sensitivity and specificity.



Change in the frontal plane QRS axis of more than 40 degrees, especially toward the “Northwest quadrant” between –90 and –180 degrees (normal is –30 to 90 degrees), is highly suggestive of VT. The presence of a qS pattern in lead V6 favors VT as a cause of wide-complex tachycardia. Concordance refers to uniform direction of the QRS complexes in the precordial leads, either all positive or all negative; for example, in VT with right bundle branch block pattern, the QRS is upright in all precordial leads (Fig. 29-2B).



Independent P-wave Activity


Atrioventricular (AV) dissociation indicates independent P-wave activity, and its presence is diagnostic of VT (Fig. 29-3A). The sinus rate is usually slower than the ventricular rate. The P waves should be upright in leads I and II if the origin is the sinus node. Variable deflections within the ST segment are suggestive of AV dissociation, and all 12 leads should be analyzed. AV dissociation can be difficult to discern, and its absence does not exclude VT, because the patient may have underlying atrial fibrillation (in up to one third of cases), or there may be retrograde ventricle-to-atrial conduction resulting in AV association in VT.



A fusion beat occurs when a sinus beat conducts to the ventricles via the AV node concurrent with a beat arising from the ventricles (Fig. 29-3B). The resulting QRS complex has an intermediate appearance between a normal beat and a VT beat. A capture beat occurs when the ventricle is depolarized via the AV node resulting in a narrow (normal-appearing) QRS (Fig. 29-3C). The presence of capture and/or fusion beats indicates AV dissociation and if present points to a diagnosis of VT. Their absence, however, does not exclude VT.





Jun 12, 2016 | Posted by in CARDIOLOGY | Comments Off on Ventricular Tachycardia

Full access? Get Clinical Tree

Get Clinical Tree app for offline access