Non–ST-Elevation Myocardial Infarction

13 Non–ST-Elevation Myocardial Infarction



Acute coronary syndromes (ACSs) encompass a wide range of clinical disorders that share a common underlying physiology: an acute or subacute imbalance between oxygen demand and supply of the myocardium. The presenting symptoms and diagnosis of patients with an ACS depend on the duration and degree of inadequate oxygenation, and the known variation in symptomatology in patients with an ACS. For these reasons, the diagnosis of ACS can be challenging and the outcomes variable. Unstable angina, non–ST-elevation myocardial infarction (MI), ST-elevation MI, and even sudden cardiac death are potential clinical manifestations of an ACS.


The incidence and potential severity of ACS makes timely diagnosis and appropriate treatment essential for minimizing morbidity and mortality. Every year in the United States, approximately 2.5 million patients are admitted to a hospital with an ACS. Two thirds of these individuals are eventually diagnosed with unstable angina or non–ST-elevation MI. This chapter focuses on diagnosis and treatment of patients in the ACS subgroup called non–ST-elevation ACS. Patients diagnosed with ST-elevation MI are discussed in Chapter 14.



Etiology and Pathogenesis


Several processes can result in an oxygen supply inadequate to meet myocardial demand, the hallmark of ACS. Most patients with an ACS share a common underlying pathophysiology: rupture of an atherosclerotic coronary artery plaque followed by the acute formation of a nonobstructive thrombus (Fig. 13-1). Plaque erosion, characterized by adherence of a thrombus to the plaque surface without an associated disruption of the plaque, is another mechanism of coronary thrombosis. Autopsy series have shown that the prevalence of plaque erosion—as opposed to plaque rupture—as the primary event in ACS is 25% to 40%. The frequency of plaque erosion is higher in women than in men.



Atherosclerotic lesions, composed primarily of a lipid-rich core and a fibrous cap, are extraordinarily common in adults and are present in most major arteries. Autopsy and intravascular ultrasound studies have confirmed the presence of coronary atherosclerotic lesions in most asymptomatic individuals older than 20 to 30 years of age. Why some plaques rupture and others do not is not entirely understood, although plaques prone to rupture do share certain characteristics. The presence of large, eccentric lipid cores and large numbers of inflammatory macrophages are common findings in fissured or ruptured plaques. The role of inflammatory cells and mediators that can effect the degradation and weakening of the protective fibrous cap is probably a critical component in ACS pathogenesis. The majority of lesions rupture at the site of greatest mechanical stress—shoulder regions where the fibrous cap is adjacent to normal intima—which are also often the site of greatest inflammatory activity. Importantly, neither the size of the plaque nor the degree of luminal obstruction caused by it correlates with the risk of rupture. In fact, nearly two thirds of plaques that subsequently rupture were lesions that resulted in stenoses at that site of less than 50%. In fact, the majority of atherosclerotic plaques that rupture are not flow-restricting, representing a stenosis of less than 70%. Thus, there is at most only partial overlap between the types of atherosclerotic lesions that would result in limiting angina (and be appropriate for surgical or percutaneous revascularization) and the less flow-limiting, more inflammatory atherosclerotic plaques that are most prone to rupture.


Other less common but important etiologies of ACS include intense focal spasm of epicardial coronary arteries (Prinzmetal angina) and conditions in which myocardial ischemia is secondary to a pathologic process extrinsic to the coronary arteries. Examples of the latter include an increase in myocardial oxygen demand secondary to tachycardia or fever or a decrease in myocardial oxygen supply due to systemic hypotension, severe anemia, or hypoxemia. These etiologies can result in a pattern of accelerating angina, particularly in individuals with significant underlying coronary atherosclerosis.


As illustrated in Figure 13-2, there are important differences in the pathophysiology of non–ST-elevation versus ST-elevation MI. The treatment of these two entities, and the long-term sequelae are also different.





Differential Diagnosis


The clinical manifestations of myocardial ischemia can be mimicked by many other processes (see also Chapter 1). Musculoskeletal disorders involving the cervical spine, shoulder, ribs, and sternum can result in nonspecific chest discomfort and even pain syndromes that are similar to angina pectoris. Symptoms from gastrointestinal causes, including esophageal reflux with associated spasm, peptic ulcer disease, and cholecystitis, are often indistinguishable from angina. Intrathoracic processes such as pneumonia, pleurisy, pneumothorax, aortic dissection, and pericarditis can produce chest discomfort. Finally, panic attacks and hyperventilation are neuropsychiatric syndromes that can be mistaken for ACS.



Diagnostic Approach



Jun 12, 2016 | Posted by in CARDIOLOGY | Comments Off on Non–ST-Elevation Myocardial Infarction

Full access? Get Clinical Tree

Get Clinical Tree app for offline access