Connective Tissue Diseases and the Heart

62 Connective Tissue Diseases and the Heart



Connective tissue disorders commonly affect the cardiovascular system. The endocardium, myocardium, and pericardium all can be injured through different mechanisms by any rheumatologic disease. Similarly, the conducting system is affected by different mechanisms in connective tissue disorders. Each disorder has a particular pattern of involvement. Aortic root disease is more common in ankylosing spondylitis. Pericarditis is prevalent in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Direct inflammatory infiltration or fibrosis frequently causes conduction system damage and may result in bundle branch blocks, atrioventricular (AV) blocks, and various electrophysiologic abnormalities; these can be associated with myocarditis, especially in polymyositis and scleroderma. In utero conduction damage may be associated with anti-Ro/SSA and anti-La/SSB antibodies passively transferred from the mother’s circulation through placental blood flow. Valvular disease, coronary lesions, and pulmonary hypertension associated with various connective tissue diseases can also lead to secondary bundle branch blocks, atrial fibrillation, and other arrhythmias. Autonomous nervous system abnormalities in RA, SLE, and ankylosing spondylitis decrease parasympathetic activity and variability. Rheumatic disease severity and activity often correlate with cardiac manifestations. However, heart disease can be the first sign of a rheumatic disease.


For all these reasons, it is important to screen for cardiovascular diseases in rheumatic disease patients. Even in the absence of traditional risk factors, cardiovascular diseases are common and are major causes of mortality and morbidity in this patient population.



Etiologies


With rare exception, the etiology of connective tissue diseases remains unclear but is probably multifactorial. It is thought that connective tissue diseases occur when individuals with a susceptible genetic background encounter an inciting factor such as infection, drugs, or environmental agents. Varying patterns of complement activation, T- and B-cell interactions, or tissue macrophage infiltration produce inflammation and damage in rheumatic disorders but are also vital to normal blood vessel homeostasis. The specific factors promoting pathogenic instead of homeostatic effects are unknown and probably involve vascular, fibrotic, and immunologic features. Clinically significant heart disease may be caused by direct immunologic injury to the myocardium, endocardium, or pericardium or to the blood vessels supplying these tissues.


Certain antibodies are associated with cardiac involvement in rheumatologic diseases. Antibodies to endothelial cells found in SLE, antiphospholipid syndrome (APS), scleroderma, and different forms of vasculitis correlate with disease activity and severity of involvement. Antibodies to myocardium are found in lupus and other connective tissue diseases. Anti-Ro/SSA and anti-La/SSB antibodies are associated with cardiac involvement and are known to cause neonatal lupus with congenital heart block. Certain major histocompatibility complex haplotypes are associated with increased risk of particular rheumatologic diseases. Classic examples include the link between human leukocyte antigen (HLA) B27 and spondyloarthropathy, as well as HLA DR4 and RA. The interaction between inflammatory cells, endothelial injury response, and repair processes may influence clinical expression of vasculitides.



Syndromes



Rheumatoid Arthritis


RA, characterized by a symmetric, additive, destructive synovitis, occurs in 1% of most populations. The most frequent cardiac manifestations in patients with RA are pericarditis and valvular heart disease (Fig. 62-1). These features are more common in patients with nodular seropositive RA than in RA patients without extra-articular pathology. With routine screening echocardiograms, pericardial thickening with or without a pericardial effusion may be seen in up to 60% of patients, though clinically evident in less than 5% (Tables 62-1 and 62-2). Pericardial fluid due to RA involvement is exudative, serosanguineous, or hemorrhagic with high acidity. Adhesions and loculations are common, often making pericardiocentesis ineffective. A significant proportion of patients with clinical pericarditis have constriction or tamponade with a grave prognosis. These patients, under some circumstances, may benefit from surgical pericardiectomy.



Table 62-1 Clinical Cardiac Manifestations in Rheumatologic Disorders































Disorder Common Less Common/Rare
Rheumatoid arthritis



Systemic lupus erythematosus



Ankylosing spondylitis




Inflammatory myopathy



Scleroderma



Antiphospholipid syndrome

 

Table 62-2 Prevalence of Cardiac Involvement in Rheumatologic Disorders



























Disorder Noninvasive Tests Autopsies
Rheumatoid arthritis



Systemic lupus erythematosus




Ankylosing spondylitis

Aortic root thickening and dilation 20% to 60%
Inflammatory myopathy


Myocarditis 30%
Scleroderma




ECG, electrocardiogram; Echo, echocardiogram; TEE, transesophageal echocardiogram; TTE, transthoracic echocardiogram.


Despite frequent occurrence (up to 70%), valvular lesions are rarely symptomatic in RA. Pathologically, endocardial lesions can be caused by fibrosis, nonspecific inflammation, or rarely, rheumatoid granulomas. Aortic or mitral insufficiency and aortic root dilation are the most common manifestations. When due to inflammation these lesions may progress rapidly and require surgical intervention. Myocarditis is rarely clinically evident but can be associated with arrhythmias. Vasculitis of coronary vessels has been described, although the clinical significance is unknown. Recently, serum levels of antibodies directed against cyclic citrullinated peptide (anti-CCP) have been detected in the sera of RA patients earlier than rheumatoid factor (RF). It has been suggested that anti-CCP may define a subset of individuals at increased risk for destructive arthritis. Strong gene-environment interactions also exist between cigarette smoking and homozygosity for HLA DRB1 shared-epitope (SE) alleles DRB1*04 or DRB1*01. Heterozygous individuals who carry at least one copy of the SE and are exposed to cigarette smoking also have a markedly increased risk of anti-CCP-positive RA. Increased cardiovascular risk occurs in RA independent of traditional risk factors and has been attributed to ongoing inflammation. More aggressive management of inflammation in RA as well as traditional risk factors may lead to marked improvements in outcomes for patients with RA.


Jun 12, 2016 | Posted by in CARDIOLOGY | Comments Off on Connective Tissue Diseases and the Heart

Full access? Get Clinical Tree

Get Clinical Tree app for offline access