In the past, subclavian revascularization was most often performed to relieve either vertebrobasilar symptoms or exertional arm pain associated with subclavian steal syndrome. Currently, subclavian revascularization is increasingly undertaken to extend the proximal landing zone during endovascular management of thoracic aortic conditions including aneurysm, dissection, and trauma. Additionally, subclavian revascularization may be appropriate to maintain or restore normal inflow to the mammary artery used in coronary artery bypass (Figure 1). Emergence of endovascular treatment for a variety of thoracic aortic conditions has led to a significant increase in the need for subclavian revascularization to extend the proximal landing zone and preserve spinal cord blood supply (Figure 2). While the role of subclavian revascularization continues to evolve, the Society for Vascular Surgery practice guidelines currently recommend routine preoperative subclavian revascularization in elective cases and in cases in which coverage of the subclavian artery would compromise perfusion of critical organs. In particular, subclavian revascularization is recommended in the settings of a dominant left vertebral artery, a left vertebral artery terminating in the posterior inferior cerebellar artery (PICA), or extensive coverage of the thoracic aorta, which could compromise spinal cord blood flow. General anesthesia is preferred for carotid–subclavian bypass. The patient is positioned with the head turned to the opposite side. Prophylactic antibiotics are administered. A transverse incision is made a fingerbreadth above the medial third of the clavicle (Figure 3). The platysma and clavicular head of the sternocleidomastoid are divided. To make the graft as short as possible, we mobilize the scalene fat pad medially. The phrenic nerve is identified on the surface of the anterior scalene muscle coursing diagonally from lateral to medial. The anterior scalene muscle is divided, taking care to avoid injury to the phrenic nerve. The thoracic duct may be ligated and divided near the point that it enters the venous system at the junction of the internal jugular and subclavian veins to prevent a postoperative lymph leak. The subclavian artery lies just deep to the anterior scalene muscle. The thyrocervical trunk, internal mammary artery, and vertebral artery are identified. The vertebral vein may be divided, if needed. The lower cords of the brachial plexus are located posterolateral at this level. The sympathetic chain lies just deep to the origin of the vertebral artery, and injury at this level will result in Horner’s syndrome (ptosis, miosis, and anhydrosis). The internal jugular vein is retracted medially, and the common carotid artery (CCA) is dissected circumferentially, taking care to avoid injury to the vagus nerve.
Carotid–Subclavian Bypass and Other Nonanatomic Revascularizations for Proximal Subclavian Artery Stenosis
Carotid–Subclavian Bypass
Stay updated, free articles. Join our Telegram channel
Full access? Get Clinical Tree