Usefulness of Circulating Biomarkers for the Prediction of Left Ventricular Remodeling After Myocardial Infarction




Left ventricular (LV) remodeling after myocardial infarction (MI) indicates a high risk of heart failure and death, but LV remodeling remains difficult to predict. Biomarkers may help to refine risk stratification for a more personalized medical approach. They may also shed light on the pathophysiologic processes involved. We performed a systematic review of the published evidence about the association of circulating biomarkers with LV remodeling after MI. We selected 59 publications. Overall, these studies examined 112 relations between 52 different biomarkers and LV remodeling. The biomarkers most consistently associated with LV remodeling were involved in extracellular matrix turnover or neurohormonal activation: matrix metalloproteinase-9, collagen peptides, and B-type natriuretic peptide. This review underscores the vitality of the research on LV remodeling but concludes that the ideal biomarker has not yet been identified. To reach this goal, future studies will have to be larger, have standardized imaging end points, and include replication populations to define optimal cutoffs for LV remodeling prediction. Cardiovascular magnetic resonance appears to be the best technique for LV remodeling assessment but its current availability may be a concern for recruitment for multicenter studies. Recent technologic advances will probably yield new candidate biomarkers of LV remodeling. Tests are necessary to determine whether a multimarker approach would significantly improve risk prediction.


Biomarkers are biological variables that can provide information about a condition of interest. In cardiac diseases, biomarkers may include demographic features, cardiac imaging findings, and genetic polymorphisms. The term is most often applied, however, to circulating serum or plasma analytes beyond those used in routine hematology and biochemistry tests. Over the previous decade, many studies have reported relations between circulating biomarkers and left ventricular (LV) remodeling after myocardial infarction (MI). The aim of these studies is twofold: (1) to improve pathophysiologic knowledge about LV remodeling and (2) to identify markers that can be used in clinical practice to refine risk stratification after MI. In view of an absence of a comprehensive review article on this topic, we systematically searched for, reviewed, and assessed published evidence on the association of circulating biomarkers with LV remodeling after MI.


Methods


We conducted a computerized Medline search of published articles through November 2011. We searched for “ventricular remodeling AND myocardial infarction,” “ventricular remodeling AND biomarkers,” and “myocardial infarction AND heart failure AND biomarkers.” Bibliographies of all relevant articles were searched manually for additional articles. Next, we performed a computerized search of the Journal Citation Reports through November 2011 to retrieve all articles citing any of the articles identified in the first step. Only English-language articles reporting original data were eligible for inclusion in the study. Review articles were searched for additional references but were not included in the analysis.


An article was judged relevant if it was a cohort study or a clinical trial of patients admitted with acute MI and it reported the measurement of ≥1 biomarker and LV remodeling data in ≥30 patients. We included studies that analyzed biomarkers in peripheral venous samples but did not consider those measuring transcardiac production of biomarkers or those used to assess infarct size such as creatine phosphokinase or cardiac troponin. Studies with a follow-up of <1 month after MI were not included. We included studies that reported LV volumes or LV diameters as indicators of LV remodeling. Because variability of the data reported (morphologic and biological variables on their original continuous scales or dichotomized into 2 groups) precluded a formal meta-analysis, relations between biomarkers and LV remodeling are presented in Table 1 as positive if a high level of the biomarker was significantly associated (p <0.05) with increased LV remodeling, negative if a low level of the biomarker was significantly associated (p <0.05) with increased LV remodeling, and none in the absence of any significant association. To visualize the association of a given biomarker with LV remodeling, data were grouped by biomarker; thus, publications that assessed >1 biomarker appear >1 time in Table 1 . Biomarkers are presented with their Gene Ontology classification.



Table 1

Studies of association of circulating biomarkers with left ventricular remodeling after myocardial infarction




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Biomarker Number of Patients Timing of Blood Sampling Method for Assessment of LV Remodeling Timing of Assessment of LV Remodeling Correlation With LV Remodeling Reference
GO: 0004222 metallopeptidase activity
Granzyme B 33 baseline, 2 wk CVG 6 mo positive Kondo et al
Matrix metalloproteinase-2 (MMP-2) 60 baseline Echo 6 wk none Squire et al
32 baseline, 1, 3, 6 mo Echo 1, 3 mo none Webb et al
52 baseline, 1 mo, 1 y, 4 y CMR 4 y none Orn et al
91 baseline Echo 6 mo none Kelly et al
100 baseline, 3, 6 mo CMR 6 mo none Weir et al
Matrix metalloproteinase-3 (MMP-3) 382 baseline Echo 5 mo positive Kelly et al
100 baseline, 3, 6 mo CMR 6 mo positive Weir et al
Matrix metalloproteinase-7 (MMP-7) 32 baseline, 1, 3, 6 mo Echo 1, 3 mo none Webb et al
Matrix metalloproteinase-8 (MMP-8) 32 baseline, 1, 3, 6 mo Echo 1, 3 mo none Webb et al
Matrix metalloproteinase-9 (MMP-9) 32 baseline, 1, 3, 6 mo Echo 1, 3 mo positive Webb et al
91 baseline Echo 6 mo positive Kelly et al
404 baseline Echo 10 mo positive Kelly et al
65 baseline, 1 y Echo 1 y positive Miyazaki et al
60 baseline Echo 6 wk none Squire et al
52 baseline, 1 mo, 1 y, 4 y CMR 4 y none Orn et al
100 baseline, 3, 6 mo CMR 6 mo none Weir et al
Tissue plasminogen activator antigen (t-PA) 100 baseline, 3, 6 mo CMR 6 mo positive Weir et al
GO: 0008191 metallopeptidase inhibitor activity
Tissue inhibitor of metalloproteinase-1 (TIMP-1) 404 baseline Echo 10 mo positive Kelly et al
32 baseline, 1, 3, 6 mo Echo 1, 3 mo none Webb et al
100 baseline, 6 mo CMR 6 mo none Weir et al
Tissue inhibitor of metalloproteinase-2 (TIMP-2) 100 baseline, 6 mo CMR 6 mo positive Weir et al
32 baseline, 1, 3, 6 mo Echo 1, 3 mo none Webb et al
Tissue inhibitor of metalloproteinase-4 (TIMP-4) 100 baseline, 6 mo CMR 6 mo positive Weir et al
GO: 0007155 cell adhesion
Amino-terminal propeptide of type III procollagen (PIIINP) 47 baseline, 3 mo, 6 mo 1 y Echo 1 y positive Poulsen et al
35 baseline, 1 mo Echo 6 mo positive Radovan et al
128 baseline, 3 mo Echo 3 mo positive Li et al
Carboxy-terminal propeptide of type I procollagen (PICP) 48 baseline, 3 mo, 6 mo, 1 y Echo 1 y positive Poulsen et al
35 baseline, 1 mo Echo 6 mo positive Radovan et al
56 baseline, 1, 6 mo Echo 6 mo none Cerisano et al
Carboxy-terminal telopeptide of type I procollagen (ICTP) 56 baseline, 1, 6 mo Echo 6 mo positive Cerisano et al
Tenascin-C 105 baseline, 2 wk, 1 mo RNA 6 mo positive Sato et al
von Willebrand factor (vWF) 100 baseline, 3, 6 mo CMR 6 mo positive Weir et al
GO: 0005179 hormone activity
Aldosterone 100 baseline, 3, 6 mo CMR 6 mo positive Weir et al
Apelin 100 baseline, 6 mo CMR 6 mo none Weir et al
Atrial natriuretic peptide (ANP) 30 baseline, 2 wk, 1 mo CVG 1 mo positive Nagaya et al
33 baseline, 1, 3 mo CVG 1, 3 mo positive Yoshitomi et al
74 1 mo CVG 5–9 mo none Hirayama et al
N-terminal pro–atrial natriuretic peptide (NT–pro-ANP) 71 baseline, 3 mo Echo 2 y positive Hole et al
Brain natriuretic peptide (BNP) 30 baseline, 2 wk, 1 mo CVG 1 mo positive Nagaya et al
33 baseline, 1, 3 mo CVG 1, 3 mo positive Yoshitomi et al
133 baseline, 2 mo Echo 2 mo positive Crilley and Farrer
74 1 mo CVG 5–9 mo positive Hirayama et al
72 baseline, 3 mo Echo 1 y positive Takagi et al
105 baseline, 2 wk, 1 mo RNA 6 mo positive Sato et al
56 baseline, 1, 6 mo Echo 6 mo positive Cerisano et al
30 baseline, 3 mo, 6 mo, 2 y Echo 3 mo, 6 mo, 2 y positive Grybauskiene et al
34 baseline, 1 mo RNA 1 mo positive Cerisano et al
106 1, 6 mo CVG 6 mo positive Hirayama et al
82 baseline, 1, 6 mo Echo and CMR 6 mo positive Garcia-Alvarez et al
100 baseline, 3, 6 mo CMR 6 mo positive Weir et al
246 baseline, 1 mo, 3 mo 1 y Echo 1 y positive Fertin et al
108 baseline Echo 1 y none Dominguez-Rodriguez et al
N-terminal pro–brain natriuretic peptide (NT–pro-BNP) 42 baseline, 1, 3, 6 mo, 1 y CMR 1 y positive Nilsson et al
106 baseline Echo 3 mo positive Xiaozhou et al
52 baseline, 1 mo, 1 y 4 y CMR 4 y positive Orn et al
404 baseline Echo 10 mo positive Kelly et al
61 baseline, 6 mo Echo 6 mo positive Giallauria et al
100 baseline, 3, 6 mo CMR 6 mo positive Weir et al
206 baseline CMR 4–6 mo positive Haeck et al
159 baseline, 6 mo Echo 6 mo positive López Haldón et al
48 baseline, 1, 3 mo CMR 3 mo positive Mather et al
60 baseline Echo 6 wk none Squire et al
91 baseline Echo 6 mo none Kelly et al
Norepinephrine 100 baseline, 3, 6 mo CMR 6 mo positive Weir et al
Arginine vasopressin 100 baseline, 6 mo CMR 6 mo none Weir et al
C-terminal provasopressin, copeptin 274 baseline Echo 5 mo positive Kelly et al
Renin 93 baseline CMR 6 mo positive Weir et al
GO: 0008083 growth factor activity
Hepatocyte growth factor (HGF) 40 baseline, 2, 3 wk CVG 3 mo positive Soeki et al
246 Baseline, 1 mo, 3 mo 1 y Echo 3 mo, 1 y positive Lamblin et al
Growth-differentiation factor 15 (GDF-15) 97 baseline Echo 1 y positive Dominguez-Rodriguez et al
Vascular endothelial growth factor (VEGF) 40 baseline, 2, 3 wk CVG 3 mo none Soeki et al
GO: 0005125 cytokine activity
Adiponectin 75 baseline Echo 1 y negative Piestrzeniewicz et al
sFas 52 baseline, 2, 3 wk CVG 3 mo none Soeki et al
sFas ligand 52 baseline, 2, 3 wk CVG 3 mo positive Soeki et al
33 baseline, 2 wk CVG 6 mo none Kondo et al
Granulocyte–macrophage colony-stimulating factor (GM-CSF) 41 baseline, 1 mo Echo 1 mo positive Parissis et al
Interleukin-6 (IL-6) 42 baseline, 1 wk, 2 mo CMR 2 mo none Ørn et al
Tumor necrosis factor-α (TNF-α) 33 baseline, 2 wk CVG 6 mo none Kondo et al
GO: 0008009 chemokine activity
C-C motif chemokine ligand 2 (CCL-2) or macrophage chemotactic protein-1 (MCP-1) 100 baseline, 3, 6 mo CMR 6 mo negative Weir et al
C-C motif chemokine ligand 3 (CCL-3) or macrophage inflammatory protein-1 alpha (MIP-1α) 35 baseline, 1 wk, 1 mo Echo 1 mo positive Parissis et al
42 baseline, 2 mo CMR 2 mo none Orn et al
C-C motif chemokine ligand 4, 5, 19 (CCL-4, 5, 19) 42 baseline, 2 mo CMR 2 mo none Orn et al
C-X-C motif chemokine ligand 7 (CXCL-7) or platelet basic protein, C-X-C motif chemokine ligand 8 (CXCL-8) or interleukin-8 42 baseline, 2 mo CMR 2 mo none Orn et al
C-X-C motif chemokine ligand 10 (CXCL-10) or interferon-inducible protein 10 33 baseline, 1 mo CVG 1 mo negative Koten et al
42 baseline, 2 mo CMR 2 mo none Orn et al
C-X-C motif chemokine ligand 16 (CXCL-16) 42 baseline, 2 mo CMR 2 mo none Orn et al
Soluble terminal C5b-9 complement complex (TCC) 42 baseline, 1 wk, 2 mo CMR 2 mo none Ørn et al
GO: 0006953 acute-phase response
C-reactive protein (CRP) 31 baseline CVG 6 mo positive Takahashi et al
139 baseline, 1 mo Echo 1 mo positive Uehara et al
106 baseline Echo 3 mo positive Xiaozhou et al
42 baseline, 1 wk, 2 mo CMR 2 mo positive Ørn et al
75 baseline Echo 1 y positive Piestrzeniewicz et al
246 baseline, 1 mo, 3 mo 1 y Echo 1 y positive Fertin et al
48 baseline, 1 mo, 3 mo CMR 3 mo positive Mather et al
108 baseline Echo 1 y none Dominguez-Rodriguez et al
GO: 0006952 defense system
Myeloperoxidase 160 baseline CVG 6 mo positive Yunoki et al
Interleukin-1 receptor-like 1 (sST2) 100 baseline, 3, 6 mo CMR 6 mo negative Weir et al
Others
Glucose 162 baseline Echo 1 y positive Bauters et al
52 baseline RNA 6 mo positive Nicolau et al
75 baseline Echo 1 y positive Piestrzeniewicz et al
131 baseline CVG 6 mo positive Aoki et al
93 baseline CMR 11 mo none Mather et al
Neopterin 108 baseline Echo 1 y positive Dominguez-Rodriguez et al
Heart-type fatty acid binding protein (H-FABP) 48 baseline, 1, 3 mo CMR 3 mo none Mather et al
Low-density lipoprotein (LDL) 109 baseline, 17 mo Echo 17 mo positive Buono et al
White blood cell count 107 baseline Echo 1 y positive Bauters et al
131 baseline CVG 6 mo positive Aoki et al
246 baseline Echo 1 y positive Bauters et al

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Dec 7, 2016 | Posted by in CARDIOLOGY | Comments Off on Usefulness of Circulating Biomarkers for the Prediction of Left Ventricular Remodeling After Myocardial Infarction

Full access? Get Clinical Tree

Get Clinical Tree app for offline access