Chapter 7 Quantitative Doppler Christopher J. Gallagher, Christina Matadial and Jadelis Giquel Here I think they’re driving at pulsed-wave Doppler versus continuous-wave Doppler. (It’s tough going through this and wondering “What are they thinking?”) To review, then, pulsed-wave Doppler takes a specific look at a specific velocity at a specific place. The pulse wave (PW) transducer is used as both a receiver and transmitter of ultrasound waves. A complete cycle of transmission waiting and receiving is called the pulse repetition frequency (PRF). The greater the depth of interrogation of the pulsed ultrasound beam the longer the waiting period. Therefore, the deeper the interrogation, the lower the PRF, and the lower the maximal velocity that can be measured. Pulsed-wave ultrasound is used to provide data for Doppler sonograms and color flow images. Another thing they might be driving at here is PISA, the proximal iso velocity surface area. This, too, is gone over ad nauseum in Chapter 3, but here goes. As blood flow converges toward a tight spot (Analogy? Think of a broad river coming to a narrow gorge), the flow will speed up. At a certain concentric area, the flow should all be at the same speed as the “chaos” of a broad river becomes the “organized tightness” of a narrow channel. This area will, when measured by color flow Doppler, hit the Nyquist limit and will start aliasing. Red flow will become blue, for example, in a semicircle. You can measure the area of this by the equation This gets into the realm of the material in Chapter 3, the volume equations you use to measure valve areas, cardiac outputs, stroke volumes, and the like. The sample problems in that chapter illustrate better than this explanation, but here goes. The gradient, or change in pressure, across a valve is measured by the Bernoulli equation: Example 1: The velocity across a stenotic mitral valve is 4 meters/second. What is the gradient?
Types of Velocity Measurements
High-Frame Rate-Doppler
Volumetric Measurements and Calculations
Valve Gradients, Areas, and Other Measurements
Stay updated, free articles. Join our Telegram channel
Full access? Get Clinical Tree