2
Normal Anatomy and Flow Patterns on Transthoracic Echocardiography
Basic Imaging Principles
Translation (movement of the heart as a whole in the chest)
Rotation (circular motion around the long axis of the left ventricle [LV])
Torsion (unequal rotational motion at the apex versus the base of the LV)
Even if the 2D image plane is fixed in position, the location of underlying structures may vary between systole and diastole. For example, in the apical four-chamber view, adjacent segments of the LV (which may be supplied by different coronary arteries) may be seen in systole versus diastole. Compared to tomographic imaging, three-dimensional (3D) imaging provides a wider field of view, but it currently has poorer resolution and a slower frame rate, and it still is affected by respiratory and cardiac motion (see Chapter 4). Thus, both modalities are used as appropriate during the echocardiographic study.
Nomenclature of Standard Views
Each tomographic image is defined by its acoustic window (the position of the transducer) and view (the image plane) (Table 2-1). The standard three orthogonal echocardiographic image planes are determined by the axis of the heart itself (with the LV as the major point of reference) rather than by skeletal or external body landmarks (Fig. 2-1). The primary reference points on the heart are the apex, defined as the tip of the LV, and the valve planes at the cardiac base. The four standard image planes are:
TABLE 2-1
Transthoracic Echo Image Orientation Nomenclature
Window (Transducer Location)
Parasternal
Apical
Subcostal
Suprasternal
Image Planes
Short-axis
Long-axis
Four-chamber
Two-chamber
Reference Points
Apex versus Base
Lateral versus Medial
Anterior versus Posterior
Figure 2–1 Basic image planes used in transthoracic echocardiography.
The long-axis view (purple arrow) extends from the LV apex through the aortic valve plane. The short-axis view (red arrow) is perpendicular to the long-axis view resulting in a circular view of the LV. The two-chamber (blue arrows) and four-chamber views (green arrow) are each about 60° rotation from the long-axis view and both are perpendicular to the short-axis view. The four-chamber view includes both ventricles and both atria. The two-chamber view includes the LV and LA.
Long-axis plane: Parallel to the long axis of the LV, with the image plane intersecting the LV apex and center of the aortic valve, aligned with the anterior-posterior diameter of the mitral annulus
Short-axis planes: A series of image planes perpendicular to the long axis of the ventricle, resulting in circular cross-sectional views of the LV, mitral valve, and aortic valve
Four-chamber plane: An image plane from apex to base, perpendicular to the short-axis view, that includes both ventricles and atria, aligned with the mediolateral diameter of both the mitral and tricuspid annulus
Two-chamber plane: An image plane from apex to base that includes the LV and left atrium (LA), perpendicular to the short-axis view, and rotated to be midway between the long-axis and four-chamber views
Acoustic windows are transducer positions that allow ultrasound access to the heart. The bony thoracic cage and adjacent air-filled lung limit acoustic access, making patient positioning and sonographer experience critical factors in obtaining diagnostic images. Transthoracic images typically are obtained from parasternal, apical, subcostal, and suprasternal notch acoustic windows. The transducer motions used to obtain the desired view are described as follows (Fig. 2-2):
Figure 2–2 Transducer motion.
This example, using a left parasternal transducer position demonstrates: Tilt: The transducer is “rocked” to provide images (A or B) in the same tomographic plane. Angle: Different image planes (perpendicular to the plane of the figure at lines A, B, and C) are obtained by angulation of the transducer. Rotation: The transducer is “twisted” with a circular motion to provide a different image plane while maintaining the same orientation between the transducer itself and the chest wall.
Move the transducer to a different position on the chest.
Tilt or point the transducer tip with a rocking motion to image different structures in the same tomographic plane.
Angle the transducer from side to side to obtain different tomographic planes somewhat parallel to the original image plane.
Rotate the image plane at a single position to obtain intersecting tomographic planes.
Image Orientation
The lateral (in short-axis views) and basal (in long-axis views) cardiac structures are displayed on the right side of the screen, which is similar to the format used for other tomographic imaging techniques. Short-axis views can be thought of as the observer looking from the apex toward the cardiac base; long-axis views, as the observer looking from the left toward the right side of the heart. The four-chamber plane is displayed with lateral structures on the right side of the screen and medial structures on the left side (as for the short-axis view).
Examination Technique
The echocardiographic examination is performed by a physician or by a trained cardiac sonographer under the supervision of a qualified physician. Guidelines and recommendations for education and training in diagnostic echocardiography for both sonographers and physicians have been published, as referenced in Chapter 5.
Echocardiographic Image Interpretation
The physician uses the tomographic 2D echocardiographic images to build a mental 3D reconstruction of the cardiac chambers and valves or uses a 3D echocardiographic data set to examine anatomy in specific image planes (see Chapter 4). To do this, an understanding of image planes and orientation and the technical aspects of image acquisition (e.g., in recognizing artifacts) is needed, along with a detailed knowledge of cardiac anatomy (Table 2-2). Recording images as the tomographic plane is moved between standard image planes is important for this analysis and ensures that abnormalities lying outside or between our arbitrary “standard” views are not missed. Three-dimensional imaging may be helpful for elucidating anatomic relationships in complex cases and may aid in identifying the optimal image planes for display of abnormal findings. Information obtained from anatomic imaging then is integrated with physiologic Doppler data and clinical information in the final echocardiographic interpretation.
TABLE 2-2
Terminology for Normal Echocardiographic Anatomy
Location | Term |
Aortic root | Sinuses of Valsalva Sino-tubular junction Coronary ostia |
Aortic valve | Right, left, and noncoronary cusps Nodules of Arantius Lambl’s excrescence |
Mitral valve | Anterior and posterior leaflets Posterior leaflet scallops (lateral, central, medial) Chordae (primary, secondary, tertiary; basal and marginal) Commissures (medial and lateral) |
Left ventricle | Wall segments (see Chapter 8) Septum, free wall Base, apex Medial and lateral papillary muscles |
Right ventricle | Inflow segment Moderator band Outflow tract (conus) Supraventricular crest Anterior, posterior, and conus papillary muscles |
Tricuspid value | Anterior, septal, and posterior leaflets Chordae Commissures |
Right atrium | RA appendage SVC, IVC junctions Valve of IVC (Chiari network) Crista terminalis Fossa ovalis Patent foramen ovale |
Left atrium | LA appendage Superior and inferior left pulmonary veins Superior and inferior right pulmonary veins Ridge at junction of LA appendage and left superior pulmonary vein |
Pericardium | Oblique sinus Transverse sinus |
Transthoracic Tomographic Views
Normal echocardiographic anatomy is described below for each tomographic view. The best views for specific cardiac structures are indicated in Table 2-3.
TABLE 2-3
Transthoracic Echo: Views for Specific Cardiac Structures
Anatomic Structures | Best Views |
Aortic valve | PLAX PSAX Apical long-axis Anteriorly angulated apical four-chamber |
Mitral valve | PLAX PSAX-mitral valve level Apical four-chamber Apical long-axis |
Pulmonic valve | PSAX (Aortic valve level) RV outflow Subcostal short-axis (Aortic valve level) |
Tricuspid valve | RV inflow Apical four-chamber Subcostal four-chamber and short-axis |
Left ventricle | PLAX PSAX Apical four-chamber, two-chamber, long-axis Subcostal four-chamber and short-axis |
Right ventricle | PLAX (RV outflow tract only) RV inflow PSAX (MV and LV levels) Apical four-chamber Subcostal four-chamber |
Left atrium | PLAX PSAX Apical four-chamber, two-chamber, long-axis Subcostal four-chamber |
Right atrium | PSAX (Aortic valve level) Apical four-chamber Subcostal four-chamber and short-axis |
Aorta Ascending Arch Descending thoracic | PLAX (standard and up an interspace) Suprasternal notch Suprasternal notch Parasternal with angulation Modified apical 2-chamber Subcostal |
Interatrial septum | PSAX Subcostal 4-chamber |
Coronary sinus | PLAX to RV inflow view (sweep) Posterior angulation from apical 4-chamber |
MV, mitral valve; PLAX, parasternal long-axis; PSAX, parasternal short-axis.
Parasternal Window
With the patient in a left lateral decubitus position and the transducer in the left third or fourth intercostal space, adjacent to the sternum, a long-axis view of the heart is obtained that bisects the long axis of both aortic and mitral valves (Figs. 2-3 and 2-4). In this standard view, the aortic sinuses, sinotubular junction, and proximal 3 to 4 cm of the ascending aorta are seen; further segments of the ascending aorta may be visualized by moving the transducer cephalad one or two interspaces. The upper limit of normal for aortic end-diastolic dimension in adults is 1.6 cm/m2 at the annulus and 2.1 cm/m2 at the sinuses.
Figure 2–3 Cardiac anatomy in the long-axis view.
The parasternal long-axis view in diastole shows: the closed right and noncoronary cusps of the aortic valve; the aortic sinuses, sinotubular junction, and proximal ascending aorta; the open anterior and posterior mitral valve leaflets; the basal and mid-ventricular segments of the anterior septum and posterior LV wall; the RV outflow tract anteriorly, and the coronary sinus in the atrioventricular groove. The medial papillary muscle is shown for reference, although slight medial angulation typically is needed to visualize this structure in the long-axis view. ∗, intervalvular fibrosa (From Otto CM: Echocardiographic evaluation of valvular heart disease. In Otto CM, Bonow R [eds]: Valvular Heart Disease: A Companion to Braunwald’s Heart Disease. Philadelphia: Saunders, 2009.)
Figure 2–4 Normal parasternal long-axis 2D echo images.
End-diastolic (left) and end-systolic (right) images show the anatomic features seen in Figure 2-3. In addition, the descending thoracic aorta (DA) is seen posterior to the left atrium.
In the long-axis view, the right coronary cusp of the aortic valve is anterior and the noncoronary cusp is posterior (the left coronary cusp is lateral to the image plane). In systole, the thin aortic leaflets open widely, assuming a parallel orientation to the aortic walls. In diastole, the leaflets are closed, with a small obtuse closure angle between the two leaflets. The leaflets appear linear from the closure line to the aortic annulus because of the hemicylindrical shape of the closed leaflets (linear along the length of the cylinder, curved along its short axis). In normal young individuals, the leaflets are so thin that only the apposed portions at the leaflets’ closure line may be seen. The 3D anatomy of the attachment line of the aortic leaflets to the aortic root is shaped like a crown with the three commissures attached near the tops of the sinuses of Valsalva and the mid-portion of each leaflet attached near the base of each sinus (Fig. 2-5). The fibrous continuity between the aortic root and the anterior mitral leaflet (absence of intervening myocardium) helps identify the anatomic LV in complex congenital disease.
Figure 2–5 Aortic valve anatomy.
Schematic diagram in a frontal view with the aortic root “opened” between the left (L) and noncoronary (N) cusps by cutting through the anterior mitral leaflet (AML) to demonstrate the crown-shaped “annulus.” The commissures are near the top of each sinus, and each leaflet has a hemicylindrical shape so that the closed leaflets appear as a straight line in the long-axis view. Each aortic leaflet has a coaptation zone, with overlap between adjacent leaflets and a thicker region, the nodule of Arantius, at the center of each cusp. The close anatomic relationships of the aortic valve to the interventricular septum (IVS), membranous septum, mitral valve, and LA can be appreciated.
The anterior and posterior mitral valve leaflets appear thin and uniform in echogenicity, with chordal attachments leading toward the medial (or posteromedial) papillary muscle seen in the long-axis view, though the papillary muscle itself is slightly medial to the long-axis plane. The anterior mitral leaflet is longer than the posterior leaflet but has a smaller annular length so that the surface areas of the two leaflets are similar (Fig. 2-6). As the mitral leaflets open in diastole, the tips separate and the anterior leaflet touches or comes very close to the ventricular septum. In systole, the leaflets coapt, with some overlap between the leaflets (apposition zone) and a slightly obtuse (>180°) angle relative to the mitral annulus plane. The chordae normally remain posterior to the plane of leaflet coaptation in systole. Some normal individuals have systolic anterior motion of the chordae resulting from mild redundancy of chordal tissue that is not associated with hemodynamic abnormalities. This must be distinguished from the pathologic systolic anterior motion of the mitral leaflets seen in hypertrophic cardiomyopathy. The mitral annulus (the attachment between the mitral leaflets, LA, and LV) is an anatomically well-defined fibrous structure shaped like a bent ellipse, with the more apical major axis bisected in the four-chamber and the more basal minor axis bisected in the long-axis view.
Figure 2–6 Mitral valve anatomy.
The mitral valve apparatus includes the leaflet, annulus, chordae, and papillary muscles. The anterior mitral leaflet attaches to a smaller portion of the circumference of the annulus than the posterior mitral leaflet but the anterior leaflet is longer. The posterior leaflet consists of three segments designated the medial (M), central (C), and lateral (L) scallops. Both leaflets attach to both the medial and lateral papillary muscle.
The left ventricle septum and posterior wall are seen at the base and mid-ventricular level in the long-axis view, allowing assessment of wall thickness, chamber dimensions, endocardial motion, and wall thickening of these myocardial segments. LV end-diastolic and end-systolic measurements of wall thickness and internal dimensions are made in the long-axis view on 2D images from the septal to posterior wall tissue blood interface or using a 2D-guided M-mode recording when a perpendicular alignment can be obtained (see Chapter 6). From the parasternal window, the LV apex is not seen; the apparent “apex” usually is an oblique image plane through the anterolateral wall.
A portion of the muscular right ventricular outflow tract is seen anteriorly. Unlike the symmetric prolate ellipsoid shape of the LV, the right ventricle (RV) does not have an easily defined long or short axis. In effect, the RV is “wrapped around” the LV, with an inflow region, an apical region, and an outflow region forming a somewhat anteroposteriorly flattened U-shaped structure. Most standard image planes result in oblique tomographic sections of the RV, so right ventricular size and systolic function are best evaluated from multiple views, as discussed more fully in Chapter 6.
Right Ventricular Inflow and Outflow Views
In the long-axis plane, the transducer is moved apically and then angulated medially to obtain a view of the right atrium (RA), tricuspid valve, and RV (Fig. 2-7). In this RV inflow view, the septal and anterior leaflets of the tricuspid valve are well seen. The RV apex is heavily trabeculated, while the outflow tract (supracristal region) has a smoother endocardial surface. The moderator band, a prominent muscle trabeculation that traverses the RV apex obliquely and contains the right bundle branch, may be seen in both parasternal and apical views (Fig. 2-8). The papillary muscles are more difficult to identify in the RV than in the LV. Typically, there are two principal papillary muscles (anterior and posterior) with a smaller supracristal (or conus) papillary muscle. The moderator band attaches near the base of the anterior RV papillary muscle.
Figure 2–7 Right ventricular inflow view.
The position of the image plane is shown in the 3D heart (top left), which is opened and rotated to the position corresponding to the echocardiographic image plane (top right). 2D images in diastole (bottom left) and systole (bottom right) in the standard orientation, show the RV and RA, tricuspid valve (TV), and ostia of the coronary sinus (CS) and inferior vena cava (IVC). In this view, two tricuspid leaflets are seen, typically the anterior and septal leaflets, but the posterior leaflet may be seen depending on the exact image plane and individual variation. MB, moderator band.
Figure 2–8 Anatomy of the right ventricle.
The crista supraventricularis separates the inflow part of the ventricle from the infundibulum, or conus arteriosus. Note the great distance between the septal leaflet of the tricuspid valve and the pulmonary valve. (From Rosse C, Gaddum-Rosse P: Hollinshead’s Textbook of Anatomy, 5th ed. Philadelphia: Lippincott-Raven, 1997, p 473. Used with permission.)
Another normal anatomic feature of the RA (Fig. 2-9) is the crista terminalis, a muscular ridge that courses anteriorly from the superior to inferior vena cava and divides the trabeculated anterior portion of the RA from the posterior, smooth-walled sinus venosus segment. The RA appendage is rarely seen on transthoracic imaging, but it is a trabeculated protrusion of the RA extending anterior to the RA free wall and base of the aorta.
Figure 2–9 Anatomy of the right atrium.
The interior of the right atrium seen from the right side. The view is toward the interatrial septum. (From Rosse C, Gaddum-Rosse P: Hollinshead’s Textbook of Anatomy, 5th ed. Philadelphia: Lippincott-Raven, 1997, p 473. Used with permission.)
The inferior vena cava is seen entering the RA inferior to the coronary sinus. In some individuals, a prominent Eustachian valve is seen at the junction of the inferior vena cava and RA both in this view and from the subcostal window. When a more extensive fenestrated valve is present, it forms a Chiari network extending from the inferior to superior vena cava, attached to the crista terminalis posteriorly and the fossa ovalis medially, with a netlike structure that appears as bright mobile echo densities in the RA. Both of these findings are considered normal variants.
The interatrial septum is not well seen in the RV inflow view, being just inferior and parallel to the image plane. However, careful angulation between the long-axis and RV inflow views allows examination of the atrial septum with recognition of the thick primum septum at its junction with the central fibrous body, the thin fossa ovalis in the central portion of the atrial septum, the ridge like limbus located superior to the fossa, and the ridge adjacent to the junction with the coronary sinus.
Short-Axis Views
At the aortic valve level (Fig. 2-10), the short-axis view demonstrates all three aortic valve leaflets: right, left, and noncoronary cusps. In systole, the aortic leaflets open to a near-circular orifice. In diastole, the typical Y-shaped arrangement of the coaptation lines of the leaflets is seen with three points of aortic attachment, or commissures. Identification of the number of aortic valve leaflets (or commissures) is made most accurately in systole, since a bicuspid valve may appear trileaflet in diastole as a result of a raphe in the larger leaflet but the presence of only two commissures in systole. The normal valve leaflets are thin at the base with an area of thickening on the ventricular aspect in the middle of the free edge of each cusp, which serves to fill the space at the center of the closed valve. These nodules normally enlarge with age (nodules of Arantius) and can have small mobile filaments attached on the ventricular surface (Lambl excrescences). These small but normal structures may be seen when echocardiographic images are of high quality and should not be mistaken for pathologic conditions. The origins of the left main and right coronary arteries often can be identified in this view.
Figure 2–10 Aortic valve short-axis view.
A, Parasternal short-axis view at the aortic valve level showing the relationship between the three cusps of the aortic valve—right coronary cusp (R), noncoronary cusp (N), left coronary cusp (L)—and the LA, RA, right ventricular outflow tract (RVOT), and the pulmonary artery (PA). The positions of the right coronary artery (RCA), left main coronary artery (LMCA), superior vena cava (SVC), pulmonic valve (PV), and tricuspid valve (TV) are shown. 2D echocardiographic images at the aortic valve level in diastole (B) and systole (C). Note the three open leaflets of the aortic valve in systole.
The aortic and pulmonic valve planes normally lie perpendicular to each other. Thus, when the aortic valve is seen in short-axis, the pulmonic valve is seen in long-axis. In adults, evaluation of the leaflets of the pulmonic valve is limited; usually only one or two leaflets are seen well, and a short-axis view often is not obtainable. The close relationship between the aortic valve and other intracardiac structures is apparent in this short-axis view (Fig. 2-11). The pulmonic valve and RV outflow tract are seen anterolaterally, adjacent to the left coronary cusp, and portions of the septal and anterior tricuspid valve leaflets are seen anteriorly and slightly medially, adjacent to the right coronary cusp. Posteriorly, the RA, interatrial septum, and LA lie in proximity to the noncoronary cusp of the aortic valve. The LA appendage can be better imaged from this view by a slight lateral angulation and a superior rotation of the transducer. The central location of the aortic valve illustrates how disease processes can extend from the aortic valve or root into the RV outflow tract, RA, or LA. Extension of disease processes into the ventricular septum or anterior mitral leaflet also is possible, as evident in the long-axis view.
Figure 2–11 Anatomic valve relationships.
An anatomic view of the cardiac base looking toward the apex in a surgeon’s view demonstrates the close relationship between the four cardiac valves. The aortic and pulmonic valve planes are perpendicular to each other. (From Otto CM: Echocardiographic evaluation of valvular heart disease. In Otto CM, Bonow R [eds]: Valvular Heart Disease: A Companion to Braunwald’s Heart Disease. 3rd ed. Philadelphia: Saunders, 2009.)
At the mitral valve short-axis level (Fig. 2-12), the thin anterior and posterior mitral leaflets are seen as they open nearly to the full cross-sectional area of the LV in diastole and close in systole. The posterior leaflet consists of three major scallops—lateral, central, and medial (also called P1, P2, and P3)—although there is considerable individual variability. The two mitral commissures (the points on the annulus where the anterior and posterior leaflets meet) are located medially and laterally. Note that this parallels the arrangement of the papillary muscles so that chordae from the medial aspects of both anterior and posterior leaflets attach to the medial (or posteromedial) papillary muscle, and chordae from the lateral aspects of both leaflets attach to the lateral (or anterolateral) papillary muscle. Chordae branch at three levels (primary, secondary, and tertiary) between the papillary muscle tip and mitral leaflet with a progressive decrease in chordal diameter and increase in the number of chordae from approximately 12 at the papillary muscle to 120 at the mitral leaflet. Most chordae attach at the free edge of the leaflets (called marginal chordae), but some (called basal chordae) attach to the LV surface of the leaflet. Occasionally, aberrant chordae to the ventricular septum or other structures are seen in an otherwise normal individual.
Figure 2–12 Short-axis plane at the mitral valve level.
The position of the image plane is shown in the 3D heart, which is opened and rotated to the position corresponding to the echocardiographic image plane. 2D images in diastole and systole in the standard orientation show the LV with the anterior and posterior mitral valve leaflets (AMVL and PMVL).