Abstract
Background
Donor artery fractional flow reserve (FFR) often improves after treatment of recipient artery stenosis, but the physiological mechanism underlying this phenomenon has not been elucidated. This study aimed to assess two novel equations that explain the donor–recipient artery interaction.
Method
Eq. (A) predicts the donor artery FFR after complete release of recipient artery stenosis, while Eq. (B) predicts the donor artery FFR after partial release of recipient artery stenosis. Eq. (B) is a general form of Eq. (A) .
<SPAN role=presentation tabIndex=0 id=MathJax-Element-1-Frame class=MathJax style="POSITION: relative" data-mathml='FFR′1−pred=FFR1−CFI1FFR2−CFI2−CFI1CFI21−FFR11−FFR2+CFI11−FFR11−CFI2/1−CFI1FFR2−CFI2′>FFR‘1−pred=((FFR1−CFI1)(FFR2−CFI2)−CFI1CFI2(1−FFR1)(1−FFR2)+CFI1(1−FFR1)(1−CFI2))/((1−CFI1)(FFR2−CFI2))FFR′1−pred=FFR1−CFI1FFR2−CFI2−CFI1CFI21−FFR11−FFR2+CFI11−FFR11−CFI2/1−CFI1FFR2−CFI2
F F R ′ 1 − pred = F F R 1 − C F I 1 F F R 2 − C F I 2 − C F I 1 C F I 2 1 − F F R 1 1 − F F R 2 + C F I 1 1 − F F R 1 1 − C F I 2 / 1 − C F I 1 F F R 2 − C F I 2
F F R ′ 1 − pred = F F R 1 − C F I 1 F F R 2 − C F I 2 − C F I 1 C F I 2 1 − F F R 1 1 − F F R 2 + C F I 1 1 − F F R 1 1 − C F I 2 / 1 − C F I 1 F F R 2 − C F I 2