Diagnostic Coronary Angiography

9 Diagnostic Coronary Angiography



The ability to directly visualize coronary arteries was a seminal advance in the history of modern medicine and led directly to the development of the concept of transluminal angioplasty (first performed in 1964), coronary artery bypass grafting (first performed in 1967), percutaneous transluminal peripheral balloon angioplasty (first performed in 1974), and percutaneous transluminal coronary balloon angioplasty (first performed in 1977). With the high prevalence of coronary artery disease (CAD) in industrialized countries, coronary angiography remains an important diagnostic modality. This chapter focuses on coronary anatomy and the technique of coronary angiography and its clinical uses.



Coronary Anatomy and Anomalies


The right coronary artery (RCA) arises from the right coronary sinus and runs in the right atrioventricular groove (Fig. 9-1). Generally, the conus artery and the sinoatrial artery arise from the RCA. In approximately 85% of individuals, the posterior descending coronary artery arises from the RCA (defined as a right dominant coronary circulation). The left main coronary artery arises from the left coronary sinus. Within a few centimeters of its origin, it divides into the left anterior descending (LAD) coronary artery (in the anterior interventricular groove), the left circumflex coronary artery (in the atrioventricular groove), and, in a minority of cases, a ramus intermedius artery.



Coronary artery anomalies are found in 1% to 1.5% of individuals (Fig. 9-2), and most of these anomalies are benign. The most common coronary artery anomaly is the presence of separate origins of the LAD and left circumflex arteries from the aorta (i.e., absence of a left main coronary artery), which occurs in 0.4% to 1% of individuals and is occasionally associated with a bicuspid aortic valve. Clinically significant anomalies include origin of a coronary artery from the opposite coronary sinus (e.g., left main artery originating from the right coronary sinus), presence of a single coronary ostium (and hence a single coronary artery), and origin of a coronary artery from the pulmonary artery.




Description of Technique


Coronary angiography delineates the course and size of the coronary arteries, identifies coronary anomalies, and provides information on the location and degree of any obstruction (Box 9-1). Coronary angiography is performed by injecting radiopaque contrast dye directly into the ostium of the left and right coronary arteries. Access to the aorta is usually gained via percutaneous puncture of the femoral artery; however, brachial, radial, and axillary arteries can also be used for arterial access. Specific preformed catheters are passed over a guide wire into the aortic root. Selection of the catheter to be used depends on the access site, the coronary artery being investigated, and operator preference. The wire is removed, and the coronary artery is cannulated with fluoroscopic guidance. Contrast dye is injected during cineradiography, while blood pressure and ECG are continually monitored and sequential frames are recorded.



Complete evaluation of coronary arteries involves angiography in multiple projections (Figs. 9-3 and 9-4). This is necessary in order to appreciate the three-dimensional aspects of the coronary arteries with this two-dimensional imaging technique. These views are obtained by rotating the imaging system to different positions around the patient, who lies supine on a radiolucent table. Views from the left or right of the patient can be obtained by varying the degrees of the angle. The imaging system can also be rotated from head (cranial) to toe (caudal) positions. Although almost limitless combinations of potential imaging positions exist, several standard views are utilized that in most cases allow full visualization of the coronary arteries. In all cases, multiple views help to delineate vessel tortuosity and avoid potential misinterpretations as a result of either foreshortening of specific areas or overlapping coronary artery branches.




The most commonly used views for left coronary angiography include right anterior oblique (RAO) with cranial and caudal angulation, left anterior oblique (LAO) with cranial and caudal angulation, and anteroposterior with cranial and caudal angulation. Views most commonly used for RCA angiography include RAO and LAO projections with or without cranial angulation. Individual variation in coronary anatomy or location of stenoses often necessitates customization of projections. Standard nomenclature to define coronary segments has been developed by several groups, including investigators in the Coronary Artery Surgery Study and the Bypass Angioplasty Revascularization Investigation.


The usual method of analyzing angiograms in clinical practice is visual identification of areas of relative narrowing, with quantification by comparing the minimal diameter of the narrowed coronary segment with that of an adjacent, normal-appearing reference segment. Although experienced observers may estimate the degree of stenosis visually, stenoses can be quantified using calipers or quantitative computer angiography. Because atherosclerotic plaques are often eccentric, orthogonal views are needed to accurately determine the degree of obstruction.


Flow in coronary arteries can be estimated at the time of coronary angiography with a scale developed by the Thrombolysis in Myocardial Infarction (TIMI) investigators. Flow defined as TIMI 0 indicates a completely occluded artery. TIMI 1 flow describes a severe lesion in which dye passes the area of narrowing but does not extend to the vessel’s distal portion. With TIMI 2 flow the distal vessel is opacified but not as rapidly as would be expected or as rapidly as nonobstructed vessels. TIMI 3 flow is “normal.” The TIMI flow index has shown significant prognostic value. TIMI “frame counts,” the number of frames necessary for dye to reach the vessel’s distal portion, are used as a quantitative index of flow.

Stay updated, free articles. Join our Telegram channel

Jun 12, 2016 | Posted by in CARDIOLOGY | Comments Off on Diagnostic Coronary Angiography

Full access? Get Clinical Tree

Get Clinical Tree app for offline access