Cardiovascular Epidemiology

70 Cardiovascular Epidemiology



Cardiovascular epidemiology originated from the necessity to quantify the likelihood of developing a coronary event; it emerged as a bridge between basic sciences, population, and clinical research, and triggered interdisciplinary research in pharmacogenetics, proteomics, biomarkers, bioinformatics, and functional imaging. This explosive growth of information is illustrated by MEDLINE searches for “cardiovascular risk factors”: one restricted to the years 1960 through 1990 retrieves 845 articles, whereas similar searches for the years 1991 through 1999 and 2000 through 2008 retrieve 2569 and 7840 articles, respectively. A better understanding of the pathogenesis, etiology, natural history, underlying mechanisms, and molecular basis of cardiovascular disease (CVD) and a better approach to design and interpretation of interventional studies have revealed multiple applications for cardiovascular epidemiology research.



Cardiovascular Risk Factors


Cardiovascular epidemiology and evidence-based preventive cardiology evolved around the concept of cardiovascular risk factors, which became an integral part of clinical assessment and decision making. A cardiovascular risk factor is a personal or environmental (natural or social) characteristic associated with an increased likelihood that a particular cardiovascular outcome will develop at a later time in the short or long term. Characteristics of these factors include the following: their distribution and influence are different in different populations; they are not always necessary and/or sufficient for development of clinically apparent coronary heart disease (CHD); they have a probabilistic character, because their importance resides in their statistical associations in populations; and they are not necessarily elastic. The magnitude of risk reduction achieved by therapy may not be equivalent to the increment in risk.



Categories of Risk Factors


CHD is a multifactorial disease with multilayered and overlapping “causes” (Box 70-1). More than 300 factors are described as “associated” with CHD. A National Heart, Lung and Blood Institute workshop on cardiovascular risk assessment classified factors implicated in the pathogenesis of a major coronary event into several levels: major atherogenic, plaque burden, conditional, underlying, susceptibility, undetermined, and protective. The multilayered, overlapping paradigm has a variety of mechanisms of action and interactions between levels.



Box 70-1 Categories of Risk Factors for CHD







With permission from Smith Jr SC, Greenland P, Grundy SM. AHA Conference Proceedings. Prevention conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: executive summary. American Heart Association. Circulation. 2000;101:111–116.



Cardiovascular Risk Prediction: Approaches to Global Risk Assessment



Clinical Importance of Global Estimates for CHD Risk


Assessment of global cardiovascular risk based on major cardiovascular risk factors has three purposes of clinical interest: identification of high-risk patients who should have immediate attention and undergo immediate intervention, motivation of patients to adhere to risk-reduction therapies, and modification of the intensity of risk-reduction efforts on the basis of the total risk estimate (Fig. 70-1). Therapeutic decisions based on quantifiable measurements improve clinical decision making, increase motivation and compliance of patients, and can be evaluated for economic planning. Guidelines for management of individual risk factors recommend matching the intensity of preventive therapy to the absolute global cardiovascular risk. Cardiovascular epidemiologic research strives to quantify this global risk via predictive models.



The most common predicted event is the incidence of CHD, which can be defined as including angina pectoris, unstable angina, unrecognized myocardial infarction (MI), recognized MI, and CHD death. When risk cut points are defined to select patients for specific therapies, definitions of coronary end points have critical importance. However, of increased interest are symptomatic heart failure, hospital admission for unstable angina, need for revascularization procedures, and changes in functional capacity and quality of life.





Estimating Risk Using the Framingham Risk Scores


The Framingham Heart Study has generated prediction equations based on multivariate regression models to estimate CHD risk. The outcomes predicted are total CHD and “hard CHD.” In the Framingham Study, approaches based on total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), whether as continuous or categorical variables, are similar in their ability to predict initial CHD events. However, extensive clinical data and clinical trial results suggest that LDL-C is the major atherogenic lipoprotein. Therefore, the use of LDL-C concentrations in the clinical setting is important whenever fasting samples are available. Despite studies advocating the use of the ratio of TC to high-density lipoprotein cholesterol (HDL-C), it was not used in Framingham predictions for two reasons. At the extremes of the TC or LDL-C distribution, equal ratios may not signify the same CHD risk, and, equally important, the use of a ratio may make it more difficult for physicians to focus on the separate values.


The blood pressure (BP) value used in the Framingham Risk Score is obtained at the time of assessment, whether the patient is taking antihypertensive drugs or not. The average of several BP measurements is needed for an accurate determination of the baseline concentration. Diabetes is defined as a fasting plasma glucose concentration greater than 126 mg/dL. The designation of “smoker” indicates any use of cigarettes within the past month.


Framingham Risk Scores provide two ways to estimate cardiovascular risk.


1. Comparison of an individual’s estimated risk with the absolute risk of an individual at low risk, that is, a person who is largely without risk factors. This is the best way to assess the full potential for risk reduction, when introduced relatively early in life (Box 70-2). Total excess risk for an individual patient can be estimated by subtracting the absolute risk of a person of the same age and sex who is at low risk from that of the individual in question.

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Jun 12, 2016 | Posted by in CARDIOLOGY | Comments Off on Cardiovascular Epidemiology

Full access? Get Clinical Tree

Get Clinical Tree app for offline access