ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2017 Appropriate Use Criteria for Multimodality Imaging in Valvular Heart Disease




Abstract


This document is 1 of 2 companion appropriate use criteria (AUC) documents developed by the American College of Cardiology, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. This document addresses the evaluation and use of multimodality imaging in the diagnosis and management of valvular heart disease, whereas the second, companion document addresses this topic with regard to structural heart disease. Although there is clinical overlap, the documents addressing valvular and structural heart disease are published separately, albeit with a common structure. The goal of the companion AUC documents is to provide a comprehensive resource for multimodality imaging in the context of valvular and structural heart disease, encompassing multiple imaging modalities.


Using standardized methodology, the clinical scenarios (indications) were developed by a diverse writing group to represent patient presentations encountered in everyday practice and included common applications and anticipated uses. Where appropriate, the scenarios were developed on the basis of the most current American College of Cardiology/American Heart Association guidelines.


A separate, independent rating panel scored the 92 clinical scenarios in this document on a scale of 1 to 9. Scores of 7 to 9 indicate that a modality is considered appropriate for the clinical scenario presented. Midrange scores of 4 to 6 indicate that a modality may be appropriate for the clinical scenario, and scores of 1 to 3 indicate that a modality is considered rarely appropriate for the clinical scenario.


The primary objective of the AUC is to provide a framework for the assessment of these scenarios by practices that will improve and standardize physician decision making. AUC publications reflect an ongoing effort by the American College of Cardiology to critically and systematically create, review, and categorize clinical situations where diagnostic tests and procedures are utilized by physicians caring for patients with cardiovascular diseases. The process is based on the current understanding of the technical capabilities of the imaging modalities examined.


Preface


Valvular and structural heart disease encompass a significant proportion of cardiovascular disease conditions. Initial diagnosis and subsequent follow-up frequently rely on imaging with more than 1 imaging modality. Rapidly evolving less-invasive and transcatheter treatment options have fueled the need for precise preprocedural and intraprocedural anatomic and functional imaging.


The publication of appropriate use criteria (AUC) reflects 1 of several ongoing efforts by the American College of Cardiology (ACC) and its partners to assist clinicians who are caring for patients with cardiovascular diseases and in support of high-quality cardiovascular care. The ACC/American Heart Association clinical practice guidelines provide a foundation for summarizing evidence-based cardiovascular care and, when evidence is lacking, expert consensus opinion that is approved in review by the ACC and American Heart Association. However, in many areas, variability remains in the use of cardiovascular imaging modalities, raising questions of overuse or underuse. The AUC provide a practical standard upon which to assess and better understand variability.


We are grateful to the writing committee for the development of the overall structure of the document and clinical scenarios, and to the rating panel, a professional group with a wide range of skills and insights, for their thoughtful deliberation of the merits of multimodality imaging for various clinical scenarios. A special thanks to Dr. Gregory Dehmer for serving as an expert moderator at our in-person rating panel meeting. We would also like to thank the AUC Task Force members who provided insight and guidance, and the ACC staff—Leah White and especially María Velásquez—for their skilled support in the generation of this document.


John U. Doherty, MD, FACC, FAHA, FACP


Chair, Multimodality Imaging in Valvular Heart Disease Writing Group


Co-Chair, Appropriate Use Criteria Task Force





Introduction


Improvements in cardiovascular imaging technology and their broader application to cardiovascular diagnosis and therapy have led to a sharp increase in cardiovascular imaging. Diagnostic imaging services reimbursed under Medicare’s physician fee schedule grew more rapidly than any other type of physician service from 1999 to 2003, although more recently, the rate of imaging volume growth in Medicare has been slowing. Still, the armamentarium of noninvasive diagnostic tools has expanded greatly, offering a variety of new and more sophisticated imaging techniques. As imaging technologies and clinical applications continue to advance, the healthcare community must understand how best to incorporate these technologies into daily clinical care and how to choose between new and established imaging technologies.


Using standardized methodology, the clinical scenarios (indications) in this document were developed by a diverse writing group to represent patient presentations encountered in everyday practice and were evaluated and rated by a separate, independent rating panel.


Because there is significant clinical overlap between valvular and structural heart disease, separating the indications in the 2 AUC documents is somewhat arbitrary. The writing group therefore deliberately followed a common structure in creating the companion documents on valvular heart disease (VHD) and structural heart disease.


Specifically, this document is organized into 3 sections and 8 tables. Section 5.1. describes scenarios of initial evaluation with no prior imaging. Table 1 lists scenarios for the asymptomatic patient, whereas Table 2 lists scenarios for the symptomatic patient. Section 5.2. describes scenarios of sequential evaluation where prior imaging has been performed. Table 3 rates scenarios in which additional testing is used to clarify the initial diagnosis. Where the initial imaging modality is assumed to be transthoracic echocardiography (TTE), TTE is grayed out and eliminated as a further option. Tables 4 and 5 describe scenarios in which additional testing is used in the context of clinical follow-up after the initial diagnosis. Table 4 describes scenarios in which additional testing is performed in asymptomatic patients or patients with stable symptoms to assess stability or change of valvular or myocardial function. Table 5 describes scenarios in which follow-up testing is done in patients with worsening symptoms or to assess response to therapy. Table 6 includes indications for patients undergoing follow-up imaging after surgical valve replacement or repair. Section 5.3. evaluates percutaneous aortic valve replacement ( Tables 7a to 7c ) and mitral valve repair ( Tables 8a to 8c ). Tables 7 and 8 are further divided into preprocedural, intraprocedural, and postprocedural indications.





Methods


Indication Development


This document addresses the appropriate use of multiple imaging modalities for clinical management of VHD. A standardized approach was used to create different categories of indications with the goal of capturing actual real-world clinical scenarios . Indications were created to cover established and emerging (specifically percutaneous structural interventions) treatment approaches for VHD.


To identify and categorize the scenarios, a multidisciplinary writing group of experts in the fields of cardiovascular imaging and VHD was convened. The group included representatives from a variety of related professional organizations and societies. Wherever possible during the writing process, the group members would map the scenarios to relevant clinical guidelines and key publications or references (see the Online Appendix ). This included diagnosis-oriented guidelines and imaging–modality-specific guidelines . After the scenarios were formed, they were reviewed and critiqued by the parent AUC Task Force and by numerous external reviewers, including interventional cardiologists, cardiac surgeons, imaging experts, and internists. After the writing group incorporated this initial feedback, the scenarios were sent to an independent rating panel to ensure an appropriate balance of specialized expertise and general practice in the rating panel . By design, the rating panel comprised a combination of experts in the cardiovascular realm but also members with more general expertise, including internists and an outcomes researcher. The inclusion of generalists is intended to prevent bias in the scoring process, as specialists might have a natural tendency to rate the indications within their specialty as more appropriate than might nonspecialists. The rating panel was provided with a standardized rating package that included relevant evidence, and formal roles were established for facilitating panel interaction at the subsequent face-to-face meeting. Care was taken in providing objective, nonbiased information, including guidelines and key references. Although panel members were not provided explicit cost information to help determine their appropriate use ratings, they were asked to implicitly consider cost as an additional factor in their evaluation of appropriate use. In rating these criteria, the AUC Rating Panel was asked to assess whether the use of the test for each scenario was Appropriate (A), May Be Appropriate (M), or Rarely Appropriate (R) (see definitions in the following text).


The members of the rating panel first evaluated the indications independently (first-round rating). Then, the panel was convened for a face-to-face meeting to discuss each indication. At this meeting, panel members were given their scores and a blinded summary of their peers’ scores. Following the meeting, panel members were asked again to independently provide scores for each indication (second-round rating). The second-round rating results were sent back to the writing group for additional vetting. At this point, the writing group had a final chance to clarify indications and, if necessary, return to the rating panel for rescoring. A detailed description of the methods used for rating the selected clinical indications is found in a previous publication, “ACCF Proposed Method for Evaluating the Appropriateness of Cardiovascular Imaging” , as well as in the updated version of this publication, “Appropriate Use of Cardiovascular Technology: 2013 ACCF Appropriate Use Criteria Methodology Update” . Based on these multiple rounds of review and revision, each scenario was rated and classified as either Appropriate, May Be Appropriate, or Rarely Appropriate, using the following definition of appropriate use:


An appropriate imaging study is one in which the expected incremental information, combined with clinical judgment, exceeds the expected negative consequences by a sufficiently wide margin for a specific indication that the procedure is generally considered acceptable care and a reasonable approach for the indication.


Median Score 7 to 9: Appropriate test for specific indication (test is generally acceptable and is a reasonable approach for the indication).


An appropriate option for management of patients in this population due to benefits generally outweighing risks; an effective option for individual care plans, although not always necessary depending on physician judgment and patient-specific preferences (i.e., procedure is generally acceptable and is generally reasonable for the indication).


Median Score 4 to 6: May Be Appropriate test for specific indication (test may be generally acceptable and may be a reasonable approach for the indication). May Be Appropriate also implies that more research and/or patient information is needed to classify the indication definitively.


At times an appropriate option for management of patients in this population due to variable evidence or agreement regarding the benefit–risk ratio, potential benefit based on practice experience in the absence of evidence, and/or variability in the population; effectiveness for individual care must be determined by a patient’s physician in consultation with the patient based on additional clinical variables and judgment along with patient preferences (i.e., procedure may be acceptable and may be reasonable for the indication).


Median Score 1 to 3: Rarely Appropriate test for specific indication (test is not generally acceptable and is not a reasonable approach for the indication).


Rarely an appropriate option for management of patients in this population due to the lack of a clear benefit/risk advantage; rarely an effective option for individual care plans; exceptions should have documentation of the clinical reasons for proceeding with this care option (i.e., procedure is not generally acceptable and is not generally reasonable for the indication).


The division of the numerical scores into 3 levels of appropriateness is somewhat arbitrary, and the numeric designations should be viewed as a continuum. Further, clinical opinions may vary for particular clinical scenarios, such that scores in the intermediate level of appropriate use were labeled “May Be Appropriate,” as critical patient or research data may be lacking or discordant. This designation should be a prompt to the field to carry out definitive research investigation whenever possible. It is anticipated that the AUC reports will continue to be revised as further data are generated and information from implementation of the criteria is accumulated.


The level of agreement among panelists as defined by RAND was analyzed on the basis of the BIOMED rule for a panel of 14 to 17 members . Thus, an agreement regarding an indication was considered to exist when 4 or fewer panelists’ ratings fell outside of the 3-point region containing the median score.


Disagreement was defined as when at least 5 panelists’ ratings fell in both the Appropriate and the Rarely Appropriate categories. Any indication having disagreement was categorized as May Be Appropriate regardless of the final median score.





Introduction


Improvements in cardiovascular imaging technology and their broader application to cardiovascular diagnosis and therapy have led to a sharp increase in cardiovascular imaging. Diagnostic imaging services reimbursed under Medicare’s physician fee schedule grew more rapidly than any other type of physician service from 1999 to 2003, although more recently, the rate of imaging volume growth in Medicare has been slowing. Still, the armamentarium of noninvasive diagnostic tools has expanded greatly, offering a variety of new and more sophisticated imaging techniques. As imaging technologies and clinical applications continue to advance, the healthcare community must understand how best to incorporate these technologies into daily clinical care and how to choose between new and established imaging technologies.


Using standardized methodology, the clinical scenarios (indications) in this document were developed by a diverse writing group to represent patient presentations encountered in everyday practice and were evaluated and rated by a separate, independent rating panel.


Because there is significant clinical overlap between valvular and structural heart disease, separating the indications in the 2 AUC documents is somewhat arbitrary. The writing group therefore deliberately followed a common structure in creating the companion documents on valvular heart disease (VHD) and structural heart disease.


Specifically, this document is organized into 3 sections and 8 tables. Section 5.1. describes scenarios of initial evaluation with no prior imaging. Table 1 lists scenarios for the asymptomatic patient, whereas Table 2 lists scenarios for the symptomatic patient. Section 5.2. describes scenarios of sequential evaluation where prior imaging has been performed. Table 3 rates scenarios in which additional testing is used to clarify the initial diagnosis. Where the initial imaging modality is assumed to be transthoracic echocardiography (TTE), TTE is grayed out and eliminated as a further option. Tables 4 and 5 describe scenarios in which additional testing is used in the context of clinical follow-up after the initial diagnosis. Table 4 describes scenarios in which additional testing is performed in asymptomatic patients or patients with stable symptoms to assess stability or change of valvular or myocardial function. Table 5 describes scenarios in which follow-up testing is done in patients with worsening symptoms or to assess response to therapy. Table 6 includes indications for patients undergoing follow-up imaging after surgical valve replacement or repair. Section 5.3. evaluates percutaneous aortic valve replacement ( Tables 7a to 7c ) and mitral valve repair ( Tables 8a to 8c ). Tables 7 and 8 are further divided into preprocedural, intraprocedural, and postprocedural indications.





Methods


Indication Development


This document addresses the appropriate use of multiple imaging modalities for clinical management of VHD. A standardized approach was used to create different categories of indications with the goal of capturing actual real-world clinical scenarios . Indications were created to cover established and emerging (specifically percutaneous structural interventions) treatment approaches for VHD.


To identify and categorize the scenarios, a multidisciplinary writing group of experts in the fields of cardiovascular imaging and VHD was convened. The group included representatives from a variety of related professional organizations and societies. Wherever possible during the writing process, the group members would map the scenarios to relevant clinical guidelines and key publications or references (see the Online Appendix ). This included diagnosis-oriented guidelines and imaging–modality-specific guidelines . After the scenarios were formed, they were reviewed and critiqued by the parent AUC Task Force and by numerous external reviewers, including interventional cardiologists, cardiac surgeons, imaging experts, and internists. After the writing group incorporated this initial feedback, the scenarios were sent to an independent rating panel to ensure an appropriate balance of specialized expertise and general practice in the rating panel . By design, the rating panel comprised a combination of experts in the cardiovascular realm but also members with more general expertise, including internists and an outcomes researcher. The inclusion of generalists is intended to prevent bias in the scoring process, as specialists might have a natural tendency to rate the indications within their specialty as more appropriate than might nonspecialists. The rating panel was provided with a standardized rating package that included relevant evidence, and formal roles were established for facilitating panel interaction at the subsequent face-to-face meeting. Care was taken in providing objective, nonbiased information, including guidelines and key references. Although panel members were not provided explicit cost information to help determine their appropriate use ratings, they were asked to implicitly consider cost as an additional factor in their evaluation of appropriate use. In rating these criteria, the AUC Rating Panel was asked to assess whether the use of the test for each scenario was Appropriate (A), May Be Appropriate (M), or Rarely Appropriate (R) (see definitions in the following text).


The members of the rating panel first evaluated the indications independently (first-round rating). Then, the panel was convened for a face-to-face meeting to discuss each indication. At this meeting, panel members were given their scores and a blinded summary of their peers’ scores. Following the meeting, panel members were asked again to independently provide scores for each indication (second-round rating). The second-round rating results were sent back to the writing group for additional vetting. At this point, the writing group had a final chance to clarify indications and, if necessary, return to the rating panel for rescoring. A detailed description of the methods used for rating the selected clinical indications is found in a previous publication, “ACCF Proposed Method for Evaluating the Appropriateness of Cardiovascular Imaging” , as well as in the updated version of this publication, “Appropriate Use of Cardiovascular Technology: 2013 ACCF Appropriate Use Criteria Methodology Update” . Based on these multiple rounds of review and revision, each scenario was rated and classified as either Appropriate, May Be Appropriate, or Rarely Appropriate, using the following definition of appropriate use:


An appropriate imaging study is one in which the expected incremental information, combined with clinical judgment, exceeds the expected negative consequences by a sufficiently wide margin for a specific indication that the procedure is generally considered acceptable care and a reasonable approach for the indication.


Median Score 7 to 9: Appropriate test for specific indication (test is generally acceptable and is a reasonable approach for the indication).


An appropriate option for management of patients in this population due to benefits generally outweighing risks; an effective option for individual care plans, although not always necessary depending on physician judgment and patient-specific preferences (i.e., procedure is generally acceptable and is generally reasonable for the indication).


Median Score 4 to 6: May Be Appropriate test for specific indication (test may be generally acceptable and may be a reasonable approach for the indication). May Be Appropriate also implies that more research and/or patient information is needed to classify the indication definitively.


At times an appropriate option for management of patients in this population due to variable evidence or agreement regarding the benefit–risk ratio, potential benefit based on practice experience in the absence of evidence, and/or variability in the population; effectiveness for individual care must be determined by a patient’s physician in consultation with the patient based on additional clinical variables and judgment along with patient preferences (i.e., procedure may be acceptable and may be reasonable for the indication).


Median Score 1 to 3: Rarely Appropriate test for specific indication (test is not generally acceptable and is not a reasonable approach for the indication).


Rarely an appropriate option for management of patients in this population due to the lack of a clear benefit/risk advantage; rarely an effective option for individual care plans; exceptions should have documentation of the clinical reasons for proceeding with this care option (i.e., procedure is not generally acceptable and is not generally reasonable for the indication).


The division of the numerical scores into 3 levels of appropriateness is somewhat arbitrary, and the numeric designations should be viewed as a continuum. Further, clinical opinions may vary for particular clinical scenarios, such that scores in the intermediate level of appropriate use were labeled “May Be Appropriate,” as critical patient or research data may be lacking or discordant. This designation should be a prompt to the field to carry out definitive research investigation whenever possible. It is anticipated that the AUC reports will continue to be revised as further data are generated and information from implementation of the criteria is accumulated.


The level of agreement among panelists as defined by RAND was analyzed on the basis of the BIOMED rule for a panel of 14 to 17 members . Thus, an agreement regarding an indication was considered to exist when 4 or fewer panelists’ ratings fell outside of the 3-point region containing the median score.


Disagreement was defined as when at least 5 panelists’ ratings fell in both the Appropriate and the Rarely Appropriate categories. Any indication having disagreement was categorized as May Be Appropriate regardless of the final median score.





General Assumptions




  • 1.

    This document will address the use of multimodality imaging for the evaluation and treatment of VHD.


  • 2.

    Indication ratings contained herein supersede the ratings of similar indications contained in previous AUC documents.


  • 3.

    Evaluation of all indications pertains only to nonurgent clinical circumstances.


  • 4.

    For the purposes of this document, which evaluates cardiovascular imaging, cardiac catheterization/angiography did not include the assessment of hemodynamics when this modality was rated.


  • 5.

    A qualified clinician has obtained a complete clinical history and performed a physical examination so that the clinical status of the patient can be assumed to be valid as stated in the indication. Example: an asymptomatic patient is truly asymptomatic, and sufficient questioning has been undertaken for the condition in question.


  • 6.

    All patients are receiving optimal standard care, including guideline-based risk factor modification, primary and secondary prevention of ischemic heart disease, or treatment of heart failure unless it is specifically noted otherwise.


  • 7.

    The indications are, at times, intended to be broad to cover an array of cardiovascular signs and symptoms and to account for the ordering physician’s best judgment as to the presence of cardiovascular abnormalities. Additionally, there are likely clinical scenarios that are not covered in this document.


  • 8.

    If the reason for a test can be assigned to more than 1 indication, it is classified under the most clinically significant indication.


  • 9.

    Testing modalities are rated for their level of appropriateness specific to clinical scenarios rather than a forced rank order comparison against other testing modalities. The goal of this document is to identify any and all tests that are considered reasonable for a given clinical indication. Determination of the range of modalities that may or may not be reasonable for specific indications is the goal of this document rather than determining a single best test for each indication or a rank order. As such, more than 1 test type may be considered Appropriate, May Be Appropriate, or Rarely Appropriate for any given clinical indication.


  • 10.

    If more than 1 modality falls into the same appropriate use category, physician judgment and available local expertise should be used to determine the choice of test.


  • 11.

    The appropriate use of testing is presumed to have the potential to affect clinical decision making and to direct therapeutic interventions.


  • 12.

    Patients are suitable candidates for the procedure after consideration of procedural risk. Unless explicitly stated, it is presumed that patients presenting for a specific clinical indication are potential candidates for all tests to be rated and do not present with strong contraindications that preclude them from being tested (e.g., renal dysfunction, presence of an implanted device). It is further noted that appropriateness ratings may not be generalized to all populations. Patients in the elderly or very elderly populations, for example, may not have been adequately studied in clinical trials. This is especially true in such patients with VHD and multiple medical comorbidities.


  • 13.

    Risk benefit: Overall patients’ representation (age, comorbidities, and so on) was used in the risk/benefit calculation. Each modality considered in this document has inherent risks that may include but are not limited to radiation exposure, contrast sensitivity, other bodily injury, and interpretation errors. For any test, there may be certain patient populations that are more susceptible to its known risks that are not specifically captured in the indications but deserve consideration when rating. Such risks should be viewed “on balance” and not used as justification to systematically reduce the level of appropriateness of a particular test compared with other tests. (e.g., tests that expose the patient to ionizing radiation should not necessarily receive a lower score than those that do not). Thus, a given modality should be weighed specifically in the context of the clinical scenario with the potential harm considered relative to the potential benefit gained.


  • 14.

    Radiation safety: No clinical evidence to date unequivocally supports the notion that low-dose ionizing radiation at the levels used in medical imaging is associated with an increased long-term risk of malignancy. In a conservative approach, many experts in the field have adopted the linear no-threshold hypothesis, which assumes a linear relationship between radiation dose and the risk of malignancy irrespective of the magnitude of the radiation dose. Accordingly, the following radiation safety principles should be applied to all testing involving ionizing radiation .




    • Clinical benefit should be as high as reasonably achievable (AHARA), embracing the guiding principle that testing should be performed on cohorts that are most likely to experience a net benefit.



    • Radiation exposure should be as low as reasonably achievable (ALARA). ALARA should be used to guide test choice and the imaging protocol. Implicit in the ALARA principle is that the use of tests involving ionizing radiation should be minimized in vulnerable populations such as younger patients, and that optimal test procedures are utilized to perform the test at the lowest possible radiation dose while preserving image quality and information output.



  • 15.

    Selection of patients for and monitoring of patients during and after contrast administration are assumed to accord with published standards when available.


  • 16.

    Cost: Clinical benefit should always be considered first, and cost should be considered in relationship to these benefits when determining net value. Example: a procedure with moderate clinical efficacy for a given AUC indication should not be scored as more appropriate than a procedure with a high clinical efficacy solely because of lower cost. Value may be informed by multiple measures of potential economic impact such as: a) induced downstream or layered testing rates; b) comparative cost savings or minimization for diagnostic or near-term follow-up; c) cost to reduce adverse outcomes (e.g., cost for hospitalization averted); and d) cost for life year gained.


  • 17.

    All tests and procedures are presumed to be performed and interpreted by qualified individuals in a facility in compliance with national standards for performing such imaging studies or procedures. Therefore, the level of appropriateness does not consider issues of local availability or skill in the rating of any modality .


  • 18.

    Time biases in available data: Newer technologies should not be considered necessarily more or less appropriate than older technologies. Apparent differences in diagnostic accuracy and risk stratification between older and newer techniques may not be accurate, especially when the techniques are not compared directly or when historical data are utilized. As treatment paradigms evolve, diagnosis may occur at earlier stages of disease, posing unique challenges for comparison of the performance of diagnostic modalities used at different stages of the disease process, owing to time lag bias.


  • 19.

    Patients are suitable candidates for the procedure, including the patient’s risk from the procedure.






Definitions





  • Family History



In this document, the term “family history” refers to first-degree relatives only.




  • Symptomatic



A patient is deemed to be symptomatic when he/she exhibits typical signs and/or symptoms (e.g., for congestive heart failure, symptoms such as dyspnea, rales, edema, and limited exercise capacity).




  • Asymptomatic



Patient is deemed asymptomatic when he/she exhibits none of the typical symptoms.




  • Low, Moderate, and High Pretest Probability



As defined by the “2013 ACC/AHA/AATS/PCNA/SCAI/STS Focused Update of the Guideline for the Diagnosis and Management of Patients with Stable Ischemic Heart Disease” . Low pretest probability indicates <10% probability of disease prior to the test under consideration. Moderate pretest probability is a range of 10% to 90% pretest probability. High pretest probability is a >90% likelihood of the presence of the disease entity under question prior to any testing.




  • Clinically Significant



An abnormality, that if left untreated, can or will lead to functional impairment or death.




  • Mild, Moderate, and Severe Valvular Disease



As defined by the “2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease” .




  • Stages of VHD



VHD as defined by the “2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease” ( Table A ).




  • Uninterpretable or Technically Limited Images



Table A

Stages of Valvular Heart Disease
























Stage Definition Description
A At risk Patients with risk factors for development of VHD
B Progressive Patients with progressive VHD (mild-to-moderate severity and asymptomatic)
C Asymptomatic severe Asymptomatic patients who meet criteria for severe VHD:
C1: Asymptomatic patients with severe VHD in whom the left or right ventricle remains compensated
C2: Asymptomatic patients with severe VHD with decompensation of the left or right ventricle
D Symptomatic severe Patients who have developed symptoms as a result of severe VHD

VHD = valvular heart disease.

Reproduced from Nishimura et al. .


Images that are not of diagnostic quality despite performance of the study by a skilled sonographer, technician, or other provider using appropriate equipment. This may be due to patient-related factors such as body habitus or motion artifact.




  • Nonsustained Ventricular Tachycardia



Ventricular arrhythmia of 3 or more consecutive complexes but lasting <30 seconds in duration at a rate >100 bpm.




  • Sustained Ventricular Tachycardia



Ventricular tachycardia lasting more than 30 seconds or requiring therapy because of hemodynamic compromise in <30 seconds.




  • Syncope



Transient loss of consciousness due to global cerebral hypoperfusion characterized by rapid onset, short duration, and spontaneous complete recovery, not lightheadedness or dizziness alone.




  • Presyncope



Near loss of consciousness.




  • Heart Failure



Signs and symptoms explainable on the basis of systolic or diastolic dysfunction.




  • Heart Failure Stages A, B, C, and D



Heart failure as defined by the “2009 Focused Update Incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults” ( Table B ).




  • Indication


Apr 15, 2018 | Posted by in CARDIOLOGY | Comments Off on ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2017 Appropriate Use Criteria for Multimodality Imaging in Valvular Heart Disease

Full access? Get Clinical Tree

Get Clinical Tree app for offline access